Welcome to Motors-Biz.com, Guest!

Hub Motor Working Principle

By Susi | Published on Dec 11,2015

The basic principle behind a vehicle equipped with in-wheel electric motors is simple. The internal combustion engine normally found under the hood is simply not necessary. It's replaced with at least two motors located in the hub of the wheels. These wheels contain not only the braking components, but also all of the functionality that was formerly performed by the engine, transmission, clutch, suspension and other related parts.

Although the concept is relatively simple in theory, in-wheel motors pose a number of questions about performance, function and efficiency. We'll take a look at all of these questions and more beginning on the next page.

Hub motor electromagnetic fields are supplied to the stationary windings of the motor. The outer part of the motor follows, or tries to follow, those fields, turning the attached wheel. In a brushed motor, energy is transferred by brushes contacting the rotating shaft of the motor. Energy is transferred in a brushless motor electronically, eliminating physical contact between stationary and moving parts. Although brushless motortechnology is more expensive, most are more efficient and longer-lasting than brushed motor systems.

A hub motor typically is designed in one of three configurations. Considered least practical is an axial-flux motor, where the stator windings are typically sandwiched between sets of magnets. The other two configurations are both radial designs with the motor magnets bonded to the rotor; in one, the inner rotation motor, the rotor sits inside the stator, as in a conventional motor. In the other, the outer-rotation motor, the rotor sits outside the stator and rotates around it. The application of hub motors in vehicular uses is still evolving, and neither configuration has become standard.

Electric motors have their greatest torque at startup, making them ideal for vehicles as they need the most torque at startup too. The idea of "revving up" so common with internal combustion engines is unnecessary with electric motors. Their greatest torque occurs as the rotor first begins to turn, which is why electric motors do not require a transmission. A gear-down arrangement may be needed, but unlike in a transmission normally paired with a combustion engine, no shifting is needed for electric motors.

Wheel hub motors are increasingly common on electric bikes and electric scooters in some parts of the world, especially Asia.


1 2 3 4 >